
Transformers
& Generative AI

Finbarr Timbers

✉ finbarrtimbers@gmail.com
 𝕏 @finbarrtimbers
🌐 https://finbarr.ca/transformers

https://x.com/finbarrtimbers
http://finbarr.ca/transformers

This transformer.

Transformers

- Incredibly useful architecture introduced by Vaswani et. al in 2017
- Increasingly dominate ~all ML

- Certainly by % of FLOPS used in production
- Goal today is to discuss why they work and develop some intuition
- Also discuss why generative AI works

https://arxiv.org/abs/1706.03762

Generative AI

Two major events in 2022, which sparked the generative AI explosion:

1. Stable Diffusion, released in August
2. ChatGPT, released in November

What made generative AI possible?

1. The transformer.
2. Pretraining.

Pretraining

- Imagine the world of ML in ye olde 2014
- Supervised learning dominates

Pretraining
- To solve a new problem, you need new data
- Consider what this looks like: you spend most of your compute teaching the

model basic world concepts
- There must be something better!

Pretraining
- To solve a new problem, you need new data
- Consider what this looks like: you spend most of your compute teaching the

model basic world concepts
- There must be something better!
- Common practice is to use existing models and finetune them (E.g. VGGNet,

which was then ludicrously large at 138M parameters). Still trained on
supervised data! (ImageNet!)

Pretraining
- Can we, instead, train on unsupervised data, like, say, all of YouTube?
- This was done in 2012 at Google Brain!
- The authors used a sparse autoencoder trained on images, and found it

could recognize various concepts
- If we can train our models on large corpuses of general data, we can then

develop good representations, and finetune to specific tasks.

https://arxiv.org/abs/1112.6209

A history of pretraining

The basic idea:

- We have lots of compute
- We don’t have very much labeled data
- What can we do?

http://www.youtube.com/watch?v=zd2V4_FNMls

Next token prediction

- What is the minimum amount of information we need to make an accurate
prediction?

- Consider the following examples:
- “Mary had a little”
- “E = M”

A history of pretraining

The problem now becomes:

- existing models saturate with more data (CNNs) or become too expensive
(LSTMs).

- Existing models have issues with long sequences, either forgetting, or
becoming extremely expensive.

The transformer

- Centered around modelling sequences
- Inputs are tensors with shape (B, S, D) (or (B, S) for LLMs specifically).
- It turns out that many useful problems have this structure!

- Text data, naturally
- Image pixels, using raster order (left to right, top to bottom)

The transformer

- The transformer is basically a large MLP
- This means that, at lower levels of compute, it does worse than more

specialized architectures, but with more compute, does better
- E.g. Vision transformers (ViTs) vs CNNs, or Diffusion transformers (DiTs) vs

UNets– only better at sufficient scale.
- But– with sufficient scale, it becomes very good.

Scaling laws

Because scale was such a priority, this led to the development of scaling laws.

Two major papers:

1. Kaplan et. al, from OpenAI, and
2. Chinchilla, from DeepMind.

Kaplan vs Chinchilla

Two scaling laws, two conclusions

Kaplan’s conclusion

Model size is all you need.

Kaplan’s conclusion

Model size is all you need.
But…

This wasn’t entirely correct.

Chinchilla
Concluded:

- Data is the constraint in a lot of cases.

- Pushing model size above 300B parameters has very

diminishing returns to scale

They trained a model which was better with “only” 70B

params to show this.

Chinchilla

Chinchilla

If we insert the values for Gopher…

Chinchilla

The transformer

What is the transformer?

The transformer

Classic transformer has two parts:

1. The encoder, which attends over all
tokens in the prompt

2. The decoder, which uses causal
attention (each token only attends to
the previous tokens).

As almost all modern transformers use a
variant on the decoder, we focus on that.

Tokenization

The inputs to transformers are (B, S) integer tensors of tokens.

Tokens are a numerical representation of text. Think: A=1, B=2, etc.

In practice: much more efficient!

Tokenization

Motivation is that, by compressing the inputs, we can learn more.

Instead of “hey there” as [“h”, “e”, “y”, “ “, “t”, “h”, “e”, “r”, “e”],

we have [48467, 1354]. 4.5x more efficient! Can learn from 4.5x the data with the
same compute.

Tokenization
This can be done for non-text modalities, like images or audio, but more typically,
pass raw pixels in. For images (passed to ViTs), we do the following:

And typically videos are represented as sequences of images.

The decoder (transformer)

The decoder LLM is a deep neural network consisting of:

1. An embedding layer, which converts the sequence of integers into
embeddings. This is a (vocabulary_size, embedding_dim) matrix.

2. N successive decoder blocks, which take in and output
3. An output head mapping the final block activations into a probability

distribution over the vocabulary. This is a (embedding_dim, vocabulary_size)
matrix.
a. In many implementations, the output head and the embedding layer are identical. These

matrices can be very large– GPT3, for instance, had a 12288 embedding_dim and a
vocabulary size of 50,257. Using 32bit floating point numbers, that’s 2.5GB per matrix (600M
parameters).

The decoder block

The decoder block is straightforward:

1. Take the (B, S, D) embedding as input
2. Run through an attention layer followed by a

residual connection
3. Run through a feed forward layer followed

by a residual
4. Depending on the specific architecture,

apply normalizations.

Feed forward

Standard 2 layer MLP!

Multi-head attention?

Inputs are (B, S, D) tensors.

W_{q, k, v} are (D, D) matrices, so Q, K, V are
(B, S, D) tensors.

We split these into (B, H, S, D//H) tensors.

Do B * H attention calculations on the (S, D // H)
tensors, combine the results.

Attention

Attention
- Develop a sequence-wise

representation, with dependencies on
all other elements in the sequence

- softmax(QK^T) weights V
- Q, K, and V are all the same–

namely, embeddings of the previous
layer activations– we are mixing the
representations and allowing for
interactions.

Attention

Attention variants

Attention variants

If we use alternate weighting functions,
can get rid of quadratic complexity!

Standard practice is to have M sparse
attention layers followed by 1 global
attention layer.

Standard (full) attention

This works really well, but is expensive.

Quadratic in sequence length!

Chunked attention

Very computationally efficient, but
doesn’t work well at the boundaries.

Thought to be partially responsible for
Llama4’s issues.

Sliding window attention

This works fairly well, but is annoying to
compute.

A standard inference optimization is to
cache the K, V values (often the most
expensive part of attention calculation!).

Non-trivial to do that here.

Do we actually need multiple heads?

Normalization

Normalization varies; 2 main flavors:

1. Pre-norm, in which we apply the normalization before the sublayers:

2. Post-norm, in which we apply it after the sublayers:

Normalization

Normalization

Why does this matter?

Consider the path the gradient takes:

1. With pre-norm, there’s a straight
shot from the end to the beginning

2. With post-norm, by the time the
gradient reaches the initial
(embedding) layer, has gone
through Nx LayerNorms. So either
shrinks/explodes!

Frontiers of generative AI

1. We’re running out of data! What’s next? RL!
a. Basically systematically exploring every pre-2022 idea and scaling it up massively. Lots of

opportunity here.
2. Context length!

a. Still no widely used attention variant with sub-quadratic complexity
b. Context doesn’t really work past 100k tokens.

3. Optimizers!
a. I thought we were done with Adam, but lots of excitement around Muon, which uses second order

information. What else?

RL with LLMs

Two major flavors:

1. RL on human feedback (RLHF), in which we gather human data, typically pairs
of samples, train a reward model, and optimize that.

2. RL with verifiable rewards, in which the model generates a bunch of data,
which is then verified, and a reward is assigned. Standard RL!

Extremely under-explored! Basic RL ideas have yet to be explored. Very little work
on e.g. replay buffers.

Questions?

✉ finbarrtimbers@gmail.com
 𝕏 @finbarrtimbers
🌐 https://finbarr.ca/transformers

https://x.com/finbarrtimbers
http://finbarr.ca/transformers

